

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

Question	Scheme	Marks
1(a)	$H_0 : p = 0.15 \quad H_1 : p \neq 0.15$	B1 B1
	$X \sim B(30, 0.15)$	M1
	$P(X \leq 1) = 0.0480$ or CR: $X = 0$	A1
	$(0.0480 > 0.025)$	
	not a significant result or do not reject H_0 or not in CR	M1
	there is no evidence of a <u>change</u> in the <u>proportion of customers buying</u> an item <u>from the display</u> .	A1ft
		(6)
1(b)	$H_0 : p = 0.2 \quad H_1 : p > 0.2$	B1
	Let S = the number who buy sandwiches, $S \sim B(120, 0.2)$,	
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$	M1 A1
	$P(S \geq 31) = P(W \geq 30.5)$	M1
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right) \quad \text{or} \quad \frac{x - 0.5 - 24}{\sqrt{19.2}} = 1.2816$	M1
	$[= P(Z > 1.48..)]$	
	$= 1 - 0.9306$	M1
	$= 0.0694 \quad x = 30.1$	A1
	< 0.10 so a significant result, there is evidence that more customers are purchasing sandwiches or the shopkeepers claim is correct.	B1ft
		(8)
		(14 marks)

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

Question	Scheme	Marks
2(a)	A statement concerning a population parameter	B1
	A critical region is the <u>range</u> / <u>set of values</u> / <u>answers</u> or a <u>test statistic</u> or <u>region/area</u> or <u>values</u> (where the test is significant) that would lead to <u>the rejection of H_0</u> / <u>acceptance of H_1</u>	B1 B1
2(b)	$H_0 : p = 0.45$ $H_1 : p < 0.45$ (or $p \neq 0.45$)	
	$X \sim B(20, 0.45)$	M1
	$P(X \leq 5) = 0.0553$	CR $X \leq 4$
	Accept H_0 . Not significant. 5 does not lie in the Critical region.	
	There is no evidence that the proportion who voted for <u>Mrs George</u> is not 45% or there is evidence to support <u>Mrs George's</u> claim	
2(c)	$B(8, 0.45): P(0) = 0.0084$	M1
	$B(7, 0.45): P(0) = 0.0152$	A1
	Hence smallest value of n is 8	B1
	Alternative	
	$(0.55)^n < 0.01$	M1
	$n \log 0.55 < \log 0.01$	
	$n > 7.7\dots$	A1
	Hence smallest value of n is 8	B1cso

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

Question	Scheme	Marks
3(a)	n is large and p close to 0.5	B1B1
		(2)
3(b)	There would be no pea seeds left	B1
		(1)
3(c)	$H_0: p = 0.55 \quad H_1: p \neq 0.55$	B1
		(1)
	$X \sim N(121, 54.45)$	B1
	$P(X \geq 134.5) = P\left(Z \geq \frac{134.5 - 121}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x - 0.5 - 121}{\sqrt{54.45}} = 1.96$	M1M1A1
	$= P(Z \geq 1.8295..)$	
	$= 1 - 0.9664$	
	$= 0.0336/0.0337 \quad x = 135.96$	A1
	Accept H_0 not in CR, not significant	M1
	The <u>company's claim</u> is justified or <u>55%</u> of its pea <u>seeds germinate</u>	A1cso
		(7)
	<u>Alternative</u>	
	$X \sim N(99, 54.45)$	B1
	$P(X \leq 85) = P\left(Z \leq \frac{85.5 - 99}{\sqrt{54.45}}\right) \text{ or } \pm \frac{x + 0.5 - 99}{\sqrt{54.45}} = 1.96$	M1 M1 A1
	$= P(Z \geq 1.8295..)$	
	$= 1 - 0.9664$	
	$= 0.0336/0.0337 \quad x = 107.5$	
	Accept H_0 not in CR, not significant	M1
	The <u>company's claim</u> is justified or <u>55%</u> of its pea <u>seeds germinate</u>	A1cso
		(11 marks)

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

Question	Scheme	Marks
4	$X \sim N(40, 3^2) \quad \bar{X} \sim N(40, \frac{9}{n})$ $N(40, \frac{9}{n})$	(Condone $Y \sim$ B1
	$P(\bar{X} > 42) = P(Z > \frac{42 - 40}{\sqrt{\frac{9}{n}}})$	M1
	$\frac{42 - 40}{\sqrt{\frac{9}{n}}} \geq 1.6449$	B1 dM1
	$n \geq 6.087$	
	$n = 7$	A1
		(5 marks)

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

Question	Scheme	Marks
5(a)	$z = \pm 3.2905$	B1
	$\sigma = \frac{30}{3.2905}$	M1
	$\sigma = 9.117 **$	A1cso
		(3)
5(b)	$H_0: \mu = 1000$ $H_1: \mu < 1000$	B1
	mean weight = 999.54	B1
	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{(999.54 - 1000)}{\frac{9.117}{\sqrt{10}}} = -0.160 \quad \text{or}$	M1A1
	$\frac{c - 1000}{\sqrt{83.12/10}} = -2.3263 \therefore \text{CR } c < 993.29$	
	1% critical value = - 2.3263	B1
	$-2.3263 < -0.160$	
	Accept H_0 / not in critical region	dM1
	There is no evidence that the machine is delivering packets of mean weight less than 1 kg	A1ft
		(7)
		(10 marks)

A level Mathematics Practice Paper – Hypothesis testing – Mark scheme

	Source paper	Question number	New spec references	Question description	New AOs
1	S2 2011	6	A 4.1, 4.2, 5.1, 5.2, 5.3	Binomial distribution, Normal distribution	1.1b, 2.2b, 2.5, 3.3, 3.5a
2	S2 Jan 2013	6	A 5.1, 5.2	Hypothesis testing, Tests on binomial	1.1b, 1.2, 2.5, 3.3, 3.5a
3	S2 2014	5	A 4.1, 4.2, 5.1, 5.3	Continuous distributions, Hypothesis tests	1.1b, 1.2, 2.2b, 2.4, 2.5, 3.3, 3.4
4	S3 2013R	2	A 5.3	Tests on normal mean	1.1b, 2.1, 3.1b, 3.4
5	S3 2014	7	A 5.3	Tests on normal mean	1.1b, 2.1, 2.2b, 2.5, 3.1b, 3.4