

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
1a	Makes an attempt to substitute $k = 1, k = 2$ and $k = 4$ into $a_k = 2^k + 1, k \geq 1$	M1	1.1b	5th Understand disproof by counter example.	
	Shows that $a_1 = 3, a_2 = 5$ and $a_4 = 17$ and these are prime numbers.	A1	1.1b		
		(2)			
1b	Substitutes a value of k that does not yield a prime number. For example, $a_3 = 9$ or $a_5 = 33$	A1	1.1b	5th Understand disproof by counter example.	
	Concludes that their number is not prime. For example, states that $9 = 3 \times 3$, so 9 is not prime.	B1	2.4		
		(2)			
(4 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2	Makes an attempt to substitute any of $n = 1, 2, 3, 4, 5$ or 6 into $\frac{n(n+1)}{2}$	M1	1.1b	5th Complete proofs by exhaustion.
	Successfully substitutes $n = 1, 2, 3, 4, 5$ and 6 into $\frac{n(n+1)}{2}$ $1 = \frac{(1)(2)}{2}$ $1+2 = \frac{(2)(3)}{2}$ $1+2+3 = \frac{(3)(4)}{2}$ $1+2+3+4 = \frac{(4)(5)}{2}$ $1+2+3+4+5 = \frac{(5)(6)}{2}$ $1+2+3+4+5+6 = \frac{(6)(7)}{2}$	A1	1.1b	
	Draws the conclusion that as the statement is true for all numbers from 1 to 6 inclusive, it has been proved by exhaustion.	B1	2.4	
	(3 marks)			
				Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3	<p>Begins the proof by assuming the opposite is true. ‘Assumption: there exists a product of two odd numbers that is even.’</p>	B1	3.1	7th Complete proofs using proof by contradiction.	
	<p>Defines two odd numbers. Can choose any two different variables. ‘Let $2m + 1$ and $2n + 1$ be our two odd numbers.’</p>	B1	2.2a		
	<p>Successfully multiplies the two odd numbers together: $(2m+1)(2n+1) \equiv 4mn + 2m + 2n + 1$</p>	M1	1.1b		
	<p>Factors the expression and concludes that this number must be odd. $4mn + 2m + 2n + 1 \equiv 2(2mn + m + n) + 1$ $2(2mn + m + n)$ is even, so $2(2mn + m + n) + 1$ must be odd.</p>	M1	1.1b		
	<p>Makes a valid conclusion. This contradicts the assumption that the product of two odd numbers is even, therefore the product of two odd numbers is odd.</p>	B1	2.4		

(5 marks)

Notes**Alternative method**

Assume the opposite is true: there exists a product of two odd numbers that is even. **(B1)**

If the product is even then 2 is a factor. **(B1)**

So 2 is a factor of at least one of the two numbers. **(M1)**

So at least one of the two numbers is even. **(M1)**

This contradicts the statement that both numbers are odd. **(B1)**

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4	<p>Begins the proof by assuming the opposite is true. ‘Assumption: there exists a number n such that n is odd and $n^3 + 1$ is also odd.’</p>	B1	3.1	7th Complete proofs using proof by contradiction.	
	<p>Defines an odd number. ‘Let $2k + 1$ be an odd number.’</p>	B1	2.2a		
	<p>Successfully calculates $(2k+1)^3 + 1$ $(2k+1)^3 + 1 \equiv (8k^3 + 12k^2 + 6k + 1) + 1 \equiv 8k^3 + 12k^2 + 6k + 2$</p>	M1	1.1b		
	<p>Factors the expression and concludes that this number must be even. $8k^3 + 12k^2 + 6k + 2 \equiv 2(4k^3 + 6k^2 + 3k + 1)$ $2(4k^3 + 6k^2 + 3k + 1)$ is even.</p>	M1	1.1b		
	<p>Makes a valid conclusion.</p>	B1	2.4		
(5 marks)					

Notes

Alternative method

Assume the opposite is true: there exists a number n such that n is odd and $n^3 + 1$ is also odd. **(B1)**

If $n^3 + 1$ is odd, then n^3 is even. **(B1)**

So 2 is a factor of n^3 . **(M1)**

This implies 2 is a factor of n . **(M1)**

This contradicts the statement n is odd. **(B1)**

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5	<p>Begins the proof by assuming the opposite is true. ‘Assumption: there do exist integers a and b such that $25a + 15b = 1$’</p>	B1	3.1	7th Complete proofs using proof by contradiction.
	<p>Understands that $25a + 15b = 1 \Rightarrow 5a + 3b = \frac{1}{5}$ ‘As both 25 and 15 are multiples of 5, divide both sides by 5 to leave $5a + 3b = \frac{1}{5}$,</p>	M1	2.2a	
	<p>Understands that if a and b are integers, then $5a$ is an integer, $3b$ is an integer and $5a + 3b$ is also an integer.</p>	M1	1.1b	
	<p>Recognises that this contradicts the statement that $5a + 3b = \frac{1}{5}$, as $\frac{1}{5}$ is not an integer. Therefore there do not exist integers a and b such that $25a + 15b = 1$’</p>	B1	2.4	
(4 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6	<p>Begins the proof by assuming the opposite is true.</p> <p>‘Assumption: there exists a rational number $\frac{a}{b}$ such that $\frac{a}{b}$ is the greatest positive rational number.’</p>	B1	3.1	<p>7th</p> <p>Complete proofs using proof by contradiction.</p>
	<p>Makes an attempt to consider a number that is clearly greater than $\frac{a}{b}$:</p> <p>‘Consider the number $\frac{a}{b} + 1$, which must be greater than $\frac{a}{b}$,</p>	M1	2.2a	
	<p>Simplifies $\frac{a}{b} + 1$ and concludes that this is a rational number.</p> $\frac{a}{b} + 1 \equiv \frac{a}{b} + \frac{b}{b} \equiv \frac{a+b}{b}$ <p>By definition, $\frac{a+b}{b}$ is a rational number.</p>	M1	1.1b	
	<p>Makes a valid conclusion.</p> <p>This contradicts the assumption that there exists a greatest positive rational number, so we can conclude that there is not a greatest positive rational number.</p>	B1	2.4	
(4 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor				
7	<p>Begins the proof by assuming the opposite is true. ‘Assumption: given a rational number a and an irrational number b, assume that $a - b$ is rational.’</p>	B1	3.1	7th Complete proofs using proof by contradiction.				
	<p>Sets up the proof by defining the different rational and irrational numbers. The choice of variables does not matter.</p> <p>Let $a = \frac{m}{n}$</p>							
	<p>As we are assuming $a - b$ is rational, let $a - b = \frac{p}{q}$</p> <p>So $a - b = \frac{p}{q} \Rightarrow \frac{m}{n} - b = \frac{p}{q}$</p>	M1	2.2a					
	<p>Solves $\frac{m}{n} - b = \frac{p}{q}$ to make b the subject and rewrites the resulting expression as a single fraction:</p> $\frac{m}{n} - b = \frac{p}{q} \Rightarrow b = \frac{m}{n} - \frac{p}{q} = \frac{mq - pn}{nq}$							
	<p>Makes a valid conclusion.</p> <p>$b = \frac{mq - pn}{nq}$, which is rational, contradicts the assumption b is an irrational number. Therefore the difference of a rational number and an irrational number is irrational.</p>	B1	2.4					
(4 marks)								
Notes								

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
8	Begins the proof by assuming the opposite is true. ‘Assumption: there exist positive integer solutions to the statement $x^2 - y^2 = 1$ ’	B1	3.1	7th Complete proofs using proof by contradiction.	
	Sets up the proof by factorising $x^2 - y^2$ and stating $(x - y)(x + y) = 1$	M1	2.2a		
	States that there is only one way to multiply to make 1: $1 \times 1 = 1$ and concludes this means that: $x - y = 1$ $x + y = 1$	M1	1.1b		
	Solves this pair of simultaneous equations to find the values of x and y : $x = 1$ and $y = 0$	M1	1.1b		
	Makes a valid conclusion. $x = 1, y = 0$ are not both positive integers, which is a contradiction to the opening statement. Therefore there do not exist positive integers x and y such that $x^2 - y^2 = 1$	B1	2.4		
(5 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
9a	<p>Begins the proof by assuming the opposite is true. ‘Assumption: there exists a number n such that n^2 is even and n is odd.’</p>	B1	3.1	7th Complete proofs using proof by contradiction.
	<p>Defines an odd number (choice of variable is not important) and successfully calculates n^2 Let $2k + 1$ be an odd number. $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$</p>	M1	2.2a	
	<p>Factors the expression and concludes that this number must be odd. $4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, so n^2 is odd.</p>	M1	1.1b	
	<p>Makes a valid conclusion. This contradicts the assumption n^2 is even. Therefore if n^2 is even, n must be even.</p>	B1	2.4	
		(4)		

9b	Begins the proof by assuming the opposite is true. 'Assumption: $\sqrt{2}$ is a rational number.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Defines the rational number: $\sqrt{2} = \frac{a}{b}$ for some integers a and b , where a and b have no common factors.	M1	2.2a	
	Squares both sides and concludes that a is even: $\sqrt{2} = \frac{a}{b} \Rightarrow 2 = \frac{a^2}{b^2} \Rightarrow a^2 = 2b^2$	M1	1.1b	
	From part a: a^2 is even implies that a is even.			
	Further states that if a is even, then $a = 2c$. Choice of variable is not important.	M1	1.1b	
	Makes a substitution and works through to find $b^2 = 2c^2$, concluding that b is also even. $a^2 = 2b^2 \Rightarrow (2c)^2 = 2b^2 \Rightarrow 4c^2 = 2b^2 \Rightarrow b^2 = 2c^2$	M1	1.1b	
	From part a: b^2 is even implies that b is even.			
	Makes a valid conclusion. If a and b are even, then they have a common factor of 2, which contradicts the statement that a and b have no common factors. Therefore $\sqrt{2}$ is an irrational number.	B1	2.4	
		(6)		
(10 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
10	Begins the proof by assuming the opposite is true. 'Assumption: there is a finite amount of prime numbers.'	B1	3.1	7th Complete proofs using proof by contradiction.	
	Considers what having a finite amount of prime numbers means by making an attempt to list them: Let all the prime numbers exist be $p_1, p_2, p_3, \dots, p_n$	M1	2.2a		
	Consider a new number that is one greater than the product of all the existing prime numbers: Let $N = (p_1 \times p_2 \times p_3 \times \dots \times p_n) + 1$	M1	1.1b		
	Understands the implication of this new number is that division by any of the existing prime numbers will leave a remainder of 1. So none of the existing prime numbers is a factor of N .	M1	1.1b		
	Concludes that either N is prime or N has a prime factor that is not currently listed.	B1	2.4		
	Recognises that either way this leads to a contradiction, and therefore there is an infinite number of prime numbers.	B1	2.4		
(6 marks)					
Notes					
If N is prime, it is a new prime number separate to the finite list of prime numbers, $p_1, p_2, p_3, \dots, p_n$.					
If N is divisible by a previously unknown prime number, that prime number is also separate to the finite list of prime numbers.					