

Write your name here

Surname

Other names

**Pearson
Edexcel GCE**

Centre Number

Candidate Number

--	--	--	--	--

--	--	--	--	--

A level Mathematics

Practice Paper Mechanics – Moments

You must have:
Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided – there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
- There are 14 questions in this question paper. The total mark for this paper is 150.
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. A steel girder AB , of mass 200 kg and length 12 m, rests horizontally in equilibrium on two smooth supports at C and at D , where $AC = 2$ m and $DB = 2$ m. A man of mass 80 kg stands on the girder at the point P , where $AP = 4$ m, as shown in Figure 1.

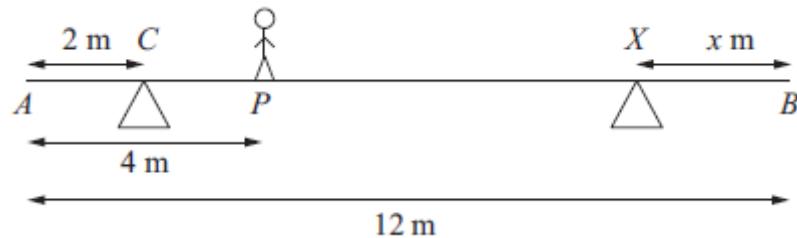


Figure 1

The man is modelled as a particle and the girder is modelled as a uniform rod.

(a) Find the magnitude of the reaction on the girder at the support at C . (3)

The support at D is now moved to the point X on the girder, where $XB = x$ metres. The man remains on the girder at P , as shown in Figure 2.

Figure 2

Given that the magnitudes of the reactions at the two supports are now equal and that the girder again rests horizontally in equilibrium, find

(b) the magnitude of the reaction at the support at X , (2)

(c) the value of x . (4)

(Total 9 marks)

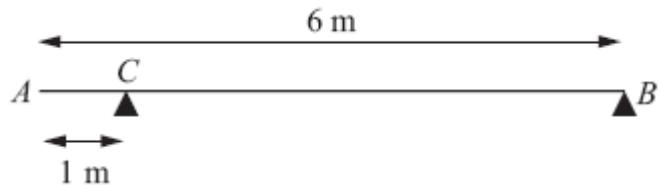
2. A plank AB has length 6 m and mass 30 kg. The point C is on the plank with $CB = 2$ m.

The plank rests in equilibrium in a horizontal position on supports at A and C . Two people, each of mass 75 kg, stand on the plank. One person stands at the point P of the plank, where $AP = x$ metres, and the other person stands at the point Q of the plank, where $AQ = 2x$ metres.

The plank remains horizontal and in equilibrium with the magnitude of the reaction at C five times the magnitude of the reaction at A . The plank is modelled as a uniform rod and each person is modelled as a particle.

(a) Find the value of x .

(7)


(b) State two ways in which you have used the assumptions made in modelling the plank as a uniform rod.

(2)

(Total 9 marks)

3.

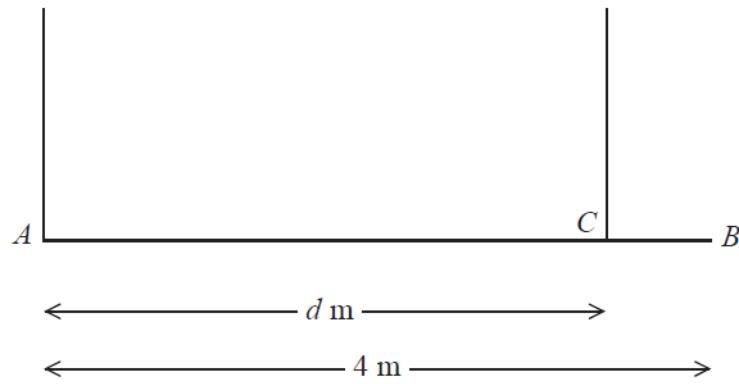
Figure 3

A uniform beam AB has mass 20 kg and length 6 m. The beam rests in equilibrium in a horizontal position on two smooth supports. One support is at C , where $AC = 1$ m, and the other is at the end B , as shown in Figure 3. The beam is modelled as a rod.

(a) Find the magnitudes of the reactions on the beam at B and at C .

(5)

A boy of mass 30 kg stands on the beam at the point D . The beam remains in equilibrium. The magnitudes of the reactions on the beam at B and at C are now equal. The boy is modelled as a particle.


(b) Find the distance AD .

(5)

(Total 10 marks)

4.

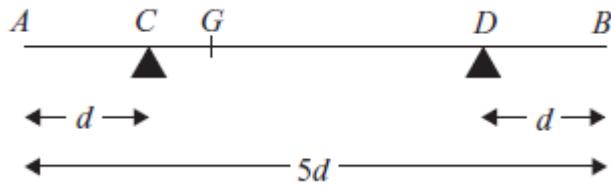
Figure 4

A beam AB has weight W newtons and length 4 m. The beam is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. One rope is attached to A and the other rope is attached to the point C on the beam, where $AC = d$ metres, as shown in Figure 4. The beam is modelled as a uniform rod and the ropes as light inextensible strings. The tension in the rope attached at C is double the tension in the rope attached at A .

(a) Find the value of d .

(6)

A small load of weight kW newtons is attached to the beam at B . The beam remains in equilibrium in a horizontal position. The load is modelled as a particle. The tension in the rope attached at C is now four times the tension in the rope attached at A .


(b) Find the value of k .

(6)

(Total 12 marks)

5.

Figure 5

A non-uniform rod AB , of mass m and length $5d$, rests horizontally in equilibrium on two supports at C and D , where $AC = DB = d$, as shown in Figure 5. The centre of mass of the rod is at the point G . A particle of mass $\frac{5}{2}m$ is placed on the rod at B and the rod is on the point of tipping about D .

(a) Show that $GD = \frac{5}{2}d$.

(4)

The particle is moved from B to the mid-point of the rod and the rod remains in equilibrium.

(b) Find the magnitude of the normal reaction between the support at D and the rod.

(5)

(Total 9 marks)

6. A plank PQR , of length 8 m and mass 20 kg, is in equilibrium in a horizontal position on two supports at P and Q , where $PQ = 6$ m.

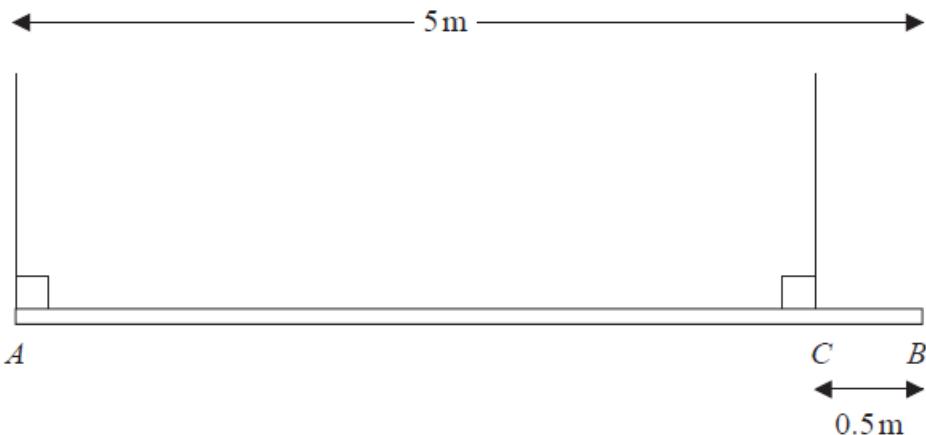
A child of mass 40 kg stands on the plank at a distance of 2 m from P and a block of mass M kg is placed on the plank at the end R . The plank remains horizontal and in equilibrium. The force exerted on the plank by the support at P is equal to the force exerted on the plank by the support at Q .

By modelling the plank as a uniform rod, and the child and the block as particles,

(a) (i) find the magnitude of the force exerted on the plank by the support at P ,

(ii) find the value of M .

(10)


(b) State how, in your calculations, you have used the fact that the child and the block can be modelled as particles.

(1)

(Total 11 marks)

7.

Figure 6

A beam AB has length 5 m and mass 25 kg. The beam is suspended in equilibrium in a horizontal position by two vertical ropes. One rope is attached to the beam at A and the other rope is attached to the point C on the beam where $CB = 0.5\text{ m}$, as shown in Figure 6. A particle P of mass 60 kg is attached to the beam at B and the beam remains in equilibrium in a horizontal position. The beam is modelled as a uniform rod and the ropes are modelled as light strings.

(a) Find

- (i) the tension in the rope attached to the beam at A ,
- (ii) the tension in the rope attached to the beam at C .

(6)

Particle P is removed and replaced by a particle Q of mass M kg at B . Given that the beam remains in equilibrium in a horizontal position,

(b) find

- (i) the greatest possible value of M ,
- (ii) the greatest possible tension in the rope attached to the beam at C .

(6)

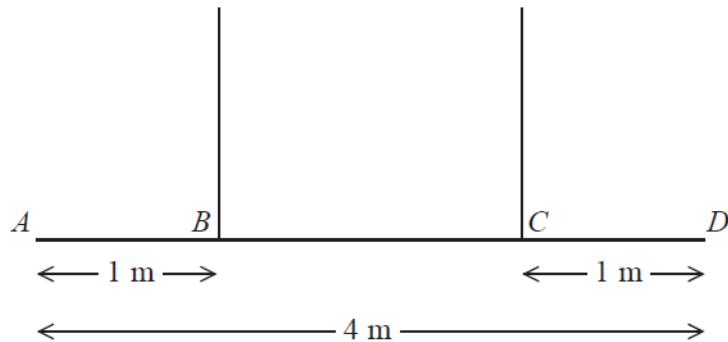
(Total 12 marks)

8. A non-uniform plank AB has length 6 m and mass 30 kg. The plank rests in equilibrium in a horizontal position on supports at the points S and T of the plank where $AS = 0.5$ m and $TB = 2$ m.

When a block of mass M kg is placed on the plank at A , the plank remains horizontal and in equilibrium and the plank is on the point of tilting about S .

When the block is moved to B , the plank remains horizontal and in equilibrium and the plank is on the point of tilting about T .

The distance of the centre of mass of the plank from A is d metres. The block is modelled as a particle and the plank is modelled as a non-uniform rod. Find


(i) the value of d ,

(ii) the value of M .

(Total 7 marks)

9.

Figure 7

A non-uniform beam AD has weight W newtons and length 4 m. It is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. The ropes are attached to two points B and C on the beam, where $AB = 1$ m and $CD = 1$ m, as shown in Figure 7. The tension in the rope attached to C is double the tension in the rope attached to B . The beam is modelled as a rod and the ropes are modelled as light inextensible strings.

(a) Find the distance of the centre of mass of the beam from A .

(6)

A small load of weight kW newtons is attached to the beam at D . The beam remains in equilibrium in a horizontal position. The load is modelled as a particle.

Find

(b) an expression for the tension in the rope attached to B , giving your answer in terms of k and W ,

(3)

(c) the set of possible values of k for which both ropes remain taut.

(2)

(Total 11 marks)

10.

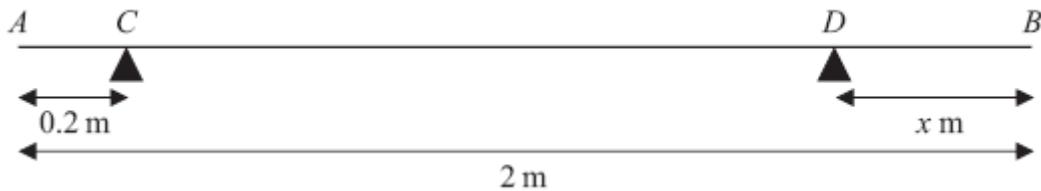


Figure 8

A uniform rod AB has length 2 m and mass 50 kg. The rod is in equilibrium in a horizontal position, resting on two smooth supports at C and D , where $AC = 0.2$ metres and $DB = x$ metres, as shown in Figure 8. Given that the magnitude of the reaction on the rod at D is twice the magnitude of the reaction on the rod at C ,

(a) find the value of x .

(6)

The support at D is now moved to the point E on the rod, where $EB = 0.4$ metres. A particle of mass m kg is placed on the rod at B , and the rod remains in equilibrium in a horizontal position. Given that the magnitude of the reaction on the rod at E is four times the magnitude of the reaction on the rod at C ,

(b) find the value of m .

(7)

(Total 13 marks)

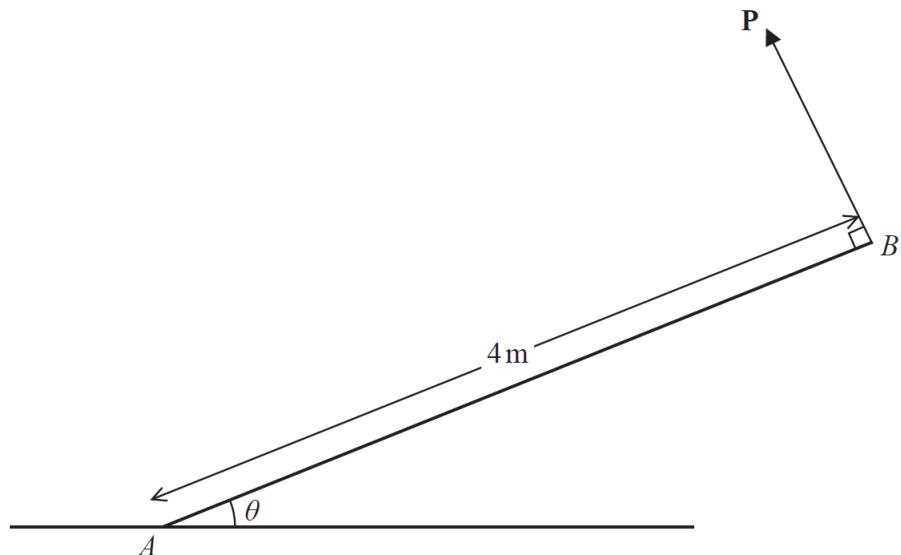
11. A beam AB has length 15 m. The beam rests horizontally in equilibrium on two smooth supports at the points P and Q , where $AP = 2$ m and $QB = 3$ m. When a child of mass 50 kg stands on the beam at A , the beam remains in equilibrium and is on the point of tilting about P . When the same child of mass 50 kg stands on the beam at B , the beam remains in equilibrium and is on the point of tilting about Q . The child is modelled as a particle and the beam is modelled as a non-uniform rod.

(a) (i) Find the mass of the beam.

(ii) Find the distance of the centre of mass of the beam from A .

(8)

When the child stands at the point X on the beam, it remains horizontal and in equilibrium. Given that the reactions at the two supports are equal in magnitude,


(b) find AX .

(6)

(Total 14 marks)

12.

Figure 9

A non-uniform rod AB , of mass 5 kg and length 4 m, rests with one end A on rough horizontal ground. The centre of mass of the rod is d metres from A . The rod is held in limiting equilibrium at an angle θ to the horizontal by a force \mathbf{P} , which acts in a direction perpendicular to the rod at B , as shown in Figure 9. The line of action of \mathbf{P} lies in the same vertical plane as the rod.

(a) Find, in terms of d , g and θ ,

- (i) the magnitude of the vertical component of the force exerted on the rod by the ground,
- (ii) the magnitude of the friction force acting on the rod at A .

(8)

Given that $\tan \theta = \frac{5}{12}$ and that the coefficient of friction between the rod and the ground is $\frac{1}{2}$,

(b) find the value of d .

(4)

(Total 12 marks)

13.

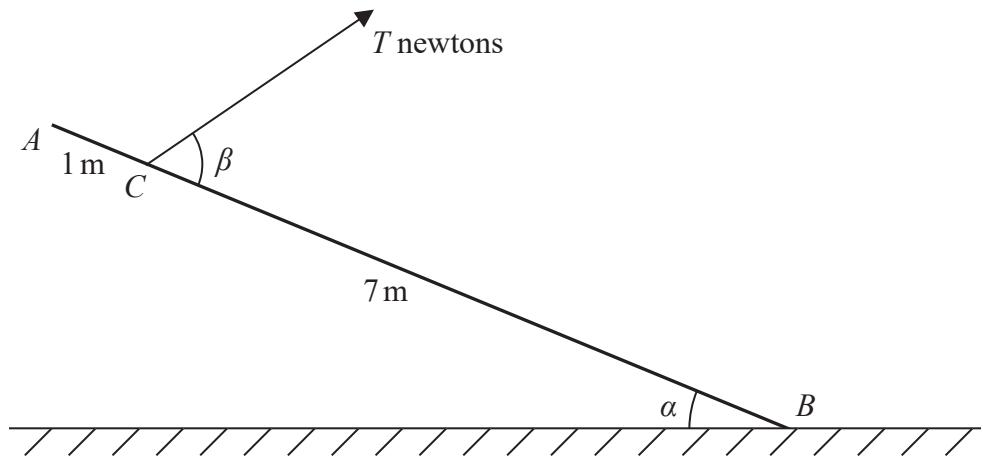
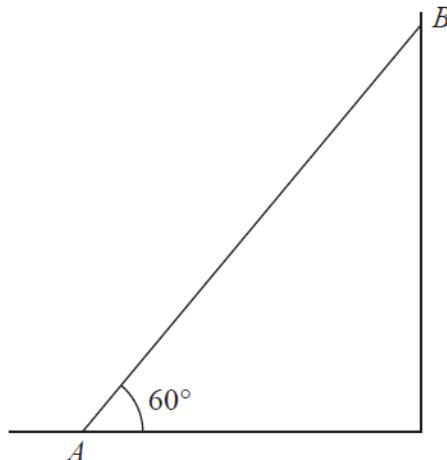


Figure 10

A uniform rod AB , of mass 5 kg and length 8 m, has its end B resting on rough horizontal ground. The rod is held in limiting equilibrium at an angle α to the horizontal, where


$\tan \alpha = \frac{3}{4}$, by a rope attached to the rod at C . The distance $AC = 1$ m. The rope is in the same vertical plane as the rod. The angle between the rope and the rod is β and the tension in the rope is T newtons, as shown in Figure 10. The coefficient of friction between the rod and the ground is $\frac{2}{3}$. The vertical component of the force exerted on the rod at B by the ground is R newtons.

(a) Find the value of R . (6)

(b) Find the size of angle β . (5)

(Total 11 marks)

14.

Figure 11

A non-uniform rod, AB , of mass m and length $2l$, rests in equilibrium with one end A on a rough horizontal floor and the other end B against a rough vertical wall. The rod is in a vertical plane perpendicular to the wall and makes an angle of 60° with the floor as shown in Figure 11. The coefficient of friction between the rod and the floor is $\frac{1}{4}$ and the coefficient of friction between the rod and the wall is $\frac{2}{3}$. The rod is on the point of slipping at both ends.

(a) Find the magnitude of the vertical component of the force exerted on the rod by the floor. (5)

The centre of mass of the rod is at G .

(b) Find the distance AG . (5)

(Total 10 marks)

TOTAL FOR PAPER: 150 MARKS