




Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	<p>Figure 1</p> <p>Graph has a distinct V-shape.</p> <p>Labels vertex $\left(-\frac{3}{2}, -4\right)$</p> <p>Finds intercept with the y-axis.</p> <p>Makes attempt to find x-intercept, for example states that $2x + 3 - 4 = 0$</p> <p>Successfully finds both x-intercepts.</p>	M1 A1 M1 M1 A1 (5)	2.2a 2.2a 1.1b 2.2a 1.1b	5th Sketch the graph of the modulus function of a linear function.
1b	<p>Recognises that there are two solutions. For example, writing $2x + 3 = -\frac{1}{4}x + 2$ and $-(2x + 3) = -\frac{1}{4}x + 2$</p> <p>Makes an attempt to solve both questions for x, by manipulating the algebra.</p> <p>Correctly states $x = -\frac{4}{9}$ or $x = -\frac{20}{7}$. Must state both answers.</p> <p>Makes an attempt to substitute to find y.</p> <p>Correctly finds y and states both sets of coordinates correctly $\left(-\frac{4}{9}, -\frac{17}{9}\right)$ and $\left(-\frac{20}{7}, -\frac{9}{7}\right)$</p>	M1 M1 A1 M1 A1 (5)	2.2a 1.1b 1.1b 1.1b	5th Solve equations involving the modulus function.
(10 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	States or implies that $pq(x) = (5 - 2x)^2$	M1	2.2a	5th Find composite functions.
	States or implies that $qp(x) = 5 - 2x^2$	M1	2.2a	
	Makes an attempt to solve $(5 - 2x)^2 = 5 - 2x^2$. For example, $25 - 20x + 4x^2 = 5 - 2x^2$ or $6x^2 - 20x + 20 = 0$ is seen.	M1	1.1b	
	States that $3x^2 - 10x + 10 = 0$. Must show all steps and a logical progression.	A1	1.1b	
		(4)		
2b	$b^2 - 4ac = 100 - 4(3)(10) = -20 < 0$	M1*	2.2a	5th Find the domain and range of composite functions.
	States that as $b^2 - 4ac < 0$ there are no real solutions to the equation.	B1*	3.2b	
		(2)		
				(6 marks)
	Notes			
2b				
Alternative Method				
M1: Uses the method of completing the square to show that $3\left(x - \frac{5}{3}\right)^2 + \frac{65}{9} = 0$ or $3\left(x - \frac{5}{3}\right)^2 = -\frac{65}{9}$				
B1: Concludes that this equation will have no real solutions.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3a	Makes an attempt to find $fg(x)$. For example, writing $fg(x) = e^{2\ln(x+1)} + 4$	M1	2.2a	5th Find composite functions.	
	Uses the law of logarithms to write $fg(x) = e^{\ln(x+1)^2} + 4$	M1	1.1b		
	States that $fg(x) = (x+1)^2 + 4$	A1	1.1b		
	States that the range is $y > 4$ or $fg(x) > 4$	B1	3.2b		
		(4)			
3b	States that $(x+1)^2 + 4 = 85$	M1	1.1b	5th Find the domain and range of composite functions.	
	Makes an attempt to solve for x , including attempting to take the square root of both sides of the equation. For example, $x+1 = \pm 9$	M1	1.1b		
	States that $x = 8$. Does not need to state that $x \neq -10$, but do not award the mark if $x = -10$ is stated.	A1	3.2b		
		(3)			
(7 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4	Understands the need to complete the square, and makes an attempt to do this. For example, $(x-4)^2$ is seen.	M1	2.2a	6th Find the domain and range of inverse functions.	
	Correctly writes $g(x) = (x-4)^2 - 9$	A1	1.1b		
	Demonstrates an understanding of the method for finding the inverse is to switch the x and y . For example, $x = (y-4)^2 - 9$ is seen.	B1	2.2a		
	Makes an attempt to rearrange to make y the subject. Attempt must include taking the square root.	M1	1.1b		
	Correctly states $g^{-1}(x) = \sqrt{x+9} + 4$	A1	1.1b		
	Correctly states domain is $x > -9$ and range is $y > 4$	B1	3.2b		
(6 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
5a	<p>Figure 2</p>	<p>Clear attempt to reflect the negative part of the original graph in the x-axis.</p> <p>Labels all three points correctly.</p> <p>Fully correct graph.</p>	M1 A1 A1	2.2a 1.1b 1.1b	7th Sketch the graphs of the modulus function of unfamiliar non-linear functions.
5b	<p>Figure 3</p>	<p>Clear attempt to reflect the positive x part of the original graph in the y-axis.</p> <p>Labels all three points correctly.</p> <p>Fully correct graph.</p>	M1 A1 A1	2.2a 1.1b 1.1b	7th Sketch the graphs of the modulus function of unfamiliar non-linear functions.
5c	<p>Figure 4</p>	<p>Clear attempt to move the graph to the left 3 spaces.</p> <p>Clear attempt to stretch the graph vertically by a factor of 2.</p> <p>Fully correct graph.</p>	M1 M1 A1	2.2a 2.2a 1.1b	6th Combine two or more transformations, including modulus graphs.
					(9 marks)
		<p>Notes</p>			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	States the range is $y \geq -5$ or $f(x) \geq -5$	B1	3.2b	5th Find the domain and range for a variety of familiar functions.
		(1)		
6b	Recognises that $3(x-4)-5 = -\frac{1}{3}x+k$ and $-3(x-4)-5 = -\frac{1}{3}x+k$	M1	2.2a	7th Solve problems involving the modulus function in unfamiliar contexts.
	Makes an attempt to solve both of these equations.	M1	1.1b	
	Correctly states $\frac{10}{3}x = k + 17$. Equivalent version is acceptable.	A1	1.1b	
	Correctly states $-\frac{8}{3}x = k - 7$. Equivalent version is acceptable.	A1	1.1b	
	Makes an attempt to substitute one equation into the other in an effort to solve for k . For example, $x = \frac{3}{10}(k+17)$ and $-\left(\frac{8}{3}\right)\left(\frac{3}{10}\right)(k+17) = k - 7$ is seen.	M1 ft	2.2a	
	Correctly solves to find $k = -\frac{11}{3}$	A1 ft	1.1b	
	States the correct range for k . $k > -\frac{11}{3}$	B1	3.2b	
		(7)		
				(8 marks)

Notes

6b

Award ft marks for a correct method using an incorrect answer from earlier in the question.

Alternative Method

Student draws the line with gradient $-\frac{1}{3}$ passing through the vertex and calculates that $k = -\frac{11}{3}$, so answer is

$$k > -\frac{11}{3}$$

M1: States the x -coordinate of the vertex of the graph is 4

M1: States the y -coordinate of the vertex of the graph is -5

M1: Writes down the gradient of $-\frac{1}{3}$ or implies it later in the question.

M1: Attempts to use $y - y_1 = m(x - x_1)$ with $(x_1, y_1) = (4, -5)$ and $m = -\frac{1}{3}$

A1: Finds $y = -\frac{1}{3}x - \frac{11}{3}$ o.e.

B1: States the correct range for k : $k > -\frac{11}{3}$

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor			
7a	Makes an attempt to substitute $t = 0$ into $T(t) = T_R + (90 - T_R) e^{-\frac{1}{20}t}$. For example, $T(t) = T_R + (90 - T_R) e^0$ or $T(t) = T_R + (90 - T_R)$ is seen.	M1	3.1a	6th Set up and use exponential models of growth and decay.			
	Concludes that the T_R terms will always cancel at $t = 0$, therefore the room temperature does not influence the initial coffee temperature.						
7b	Makes an attempt to substitute $T_R = 20$ and $t = 10$ into $T(t) = T_R + (90 - T_R) e^{-\frac{1}{20}t}$. For example, $T(10) = 20 + (90 - 20) e^{-\frac{1}{20}(10)}$ is seen.	M1	1.1b	6th Set up and use exponential models of growth and decay.			
	Finds $T(10) = 62.457\dots$ °C. Accept awrt 62.5°.						
(4 marks)							
Notes							