

SelexIQ Education – A Level Mathematics

Chapter 2: Functions Worksheet

Instructions

- Read each question carefully before attempting your solution.
- Show all relevant working for full marks.
- You may use a scientific calculator unless otherwise stated.
- Answer all questions in the spaces provided.

Student Name: _____

Date: _____

Questions

Question 1

The functions f and g are defined by

$$f(x) = 7 - 2x^2 \quad x \in \mathbb{R}$$

$$g(x) = \frac{3x}{5x-1} \quad x \in \mathbb{R} \quad x \neq \frac{1}{5}$$

(a) State the range of f (1)

(b) Find $gf(1.8)$ (2)

(c) Find $g^{-1}(x)$ (2)

Question 2

The function f is defined by

$$f(x) = \frac{8x + 5}{2x + 3} \quad x > -\frac{3}{2}$$

(a) Find $f^{-1}\left(\frac{3}{2}\right)$ (2)

(b) Show that

$$f(x) = A + \frac{B}{2x + 3}$$

where A and B are constants to be found. (2)

The function g is defined by

$$g(x) = 16 - x^2 \quad 0 \leq x \leq 4$$

(c) State the range of g^{-1} (1)

(d) Find the range of $f \circ g^{-1}$ (3)

Question 3

The function f is defined by

$$f(x) = 3 + \sqrt{x - 2} \quad x \in \mathbb{R} \quad x > 2$$

(a) State the range of f

(1)

(b) Find f^{-1}

(3)

The function g is defined by

$$g(x) = \frac{15}{x - 3} \quad x \in \mathbb{R} \quad x \neq 3$$

(c) Find $gf(6)$

(2)

(d) Find the exact value of the constant a for which

$$f(a^2 + 2) = g(a)$$

(2)

Question 4

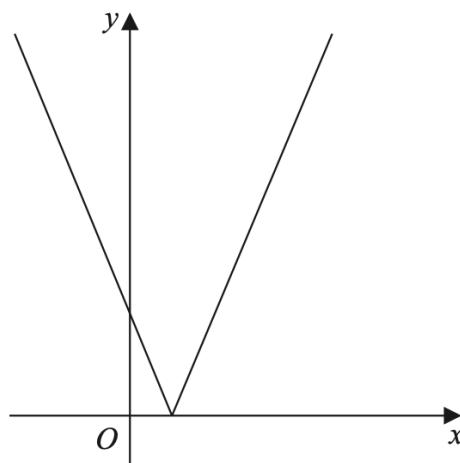


Figure 4

Figure 4 shows a sketch of the graph with equation

$$y = |2x - 3k|$$

where k is a positive constant.

(a) Sketch the graph with equation $y = f(x)$ where

$$f(x) = k - |2x - 3k|$$

stating

- the coordinates of the maximum point
- the coordinates of any points where the graph cuts the coordinate axes

(4)

(b) Find, in terms of k , the set of values of x for which

$$k - |2x - 3k| > x - k$$

giving your answer in set notation.

(4)

(c) Find, in terms of k , the coordinates of the minimum point of the graph with equation

$$y = 3 - 5f\left(\frac{1}{2}x\right)$$

(2)

Question 5

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

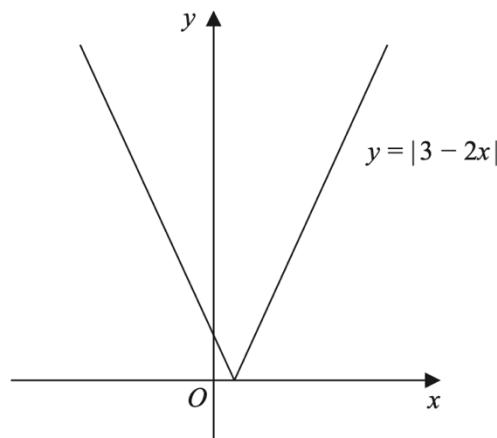


Figure 1

Figure 1 shows a sketch of the graph with equation $y = |3 - 2x|$

Solve

$$|3 - 2x| = 7 + x$$

(4)

Question 5

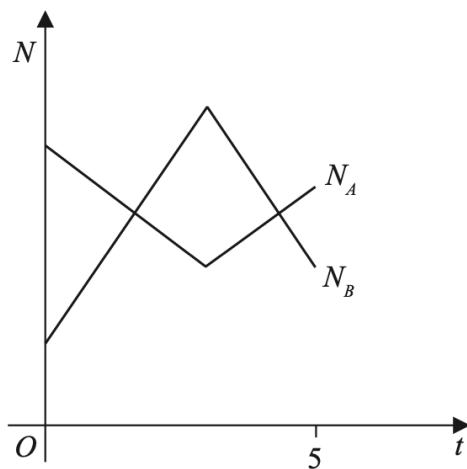


Figure 2

The number of subscribers to two different music streaming companies is being monitored.

The number of subscribers, N_A , in thousands, to **company A** is modelled by the equation

$$N_A = |t - 3| + 4 \quad t \geq 0$$

where t is the time in years since monitoring began.

The number of subscribers, N_B , in thousands, to **company B** is modelled by the equation

$$N_B = 8 - |2t - 6| \quad t \geq 0$$

where t is the time in years since monitoring began.

Figure 2 shows a sketch of the graph of N_A and the graph of N_B over a 5-year period.

Use the equations of the models to answer parts (a), (b), (c) and (d).

(a) Find the initial difference between the number of subscribers to **company A** and the number of subscribers to **company B**. (2)

When $t = T$ **company A** reduced its subscription prices and the number of subscribers increased.

(b) Suggest a value for T , giving a reason for your answer. (2)

(c) Find the range of values of t for which $N_A > N_B$ giving your answer in set notation. (5)

(d) State a limitation of the model used for **company B**. (1)

Question 6

The function f is defined by

$$f : x \mapsto |2x - 5|, \quad x \in \mathbb{R}$$

(a) Sketch the graph with equation $y = f(x)$, showing the coordinates of the points where the graph cuts or meets the axes.

(2)

(b) Solve $f(x) = 15 + x$.

(3)

The function g is defined by

$$g : x \mapsto x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \leq x \leq 5$$

(c) Find $fg(2)$.

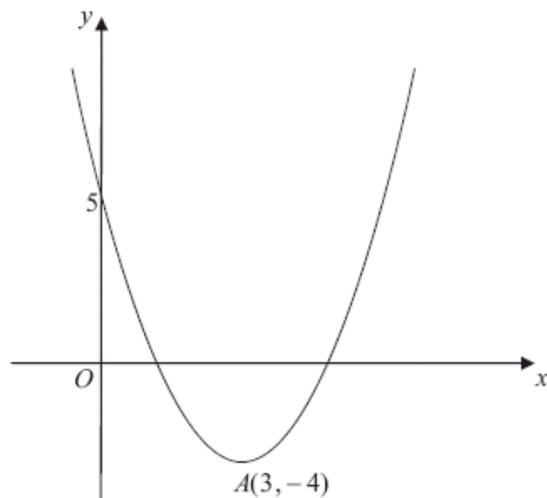
(2)

(d) Find the range of g .

(3)

(Total 10 marks)

Question 7



The diagram above shows a sketch of the curve with the equation $y = f(x)$, $x \in \mathbb{R}$.

The curve has a turning point at $A(3, -4)$ and also passes through the point $(0, 5)$.

(a) Write down the coordinates of the point to which A is transformed on the curve with equation

(i) $y = |f(x)|$,

(ii) $y = 2f\left(\frac{1}{2}x\right)$.

(4)

(b) Sketch the curve with equation

$$y = f(|x|)$$

(3)

On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the y -axis.

The curve with equation $y = f(x)$ is a translation of the curve with equation $y = x^2$.

(c) Find $f(x)$.

(2)

(d) Explain why the function f does not have an inverse.

(1)

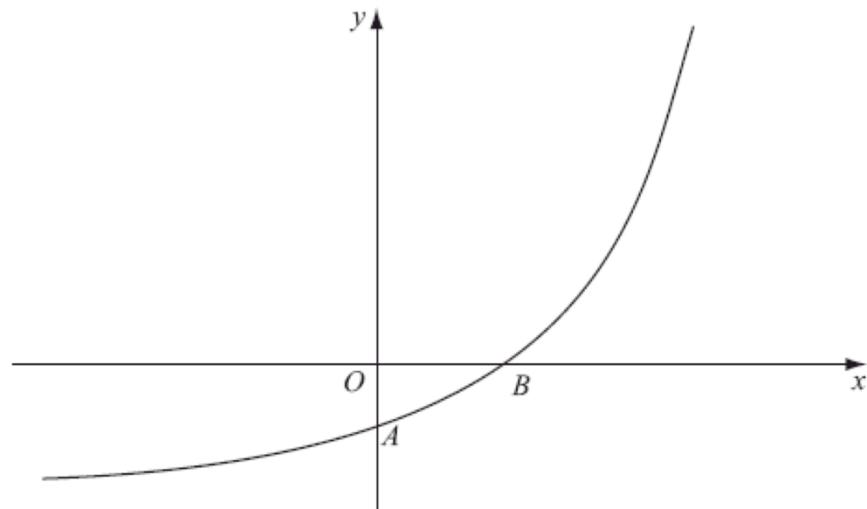
(Total 10 marks)

Question 8

Sketch the graph of $y = \ln|x|$, stating the coordinates of any points of intersection with the axes.

(Total 3 marks)

Question 9



The figure above shows a sketch of part of the curve with equation $y = f(x)$, $x \in \mathbb{R}$

The curve meets the coordinate axes at the points $A(0, 1 - k)$ and $B\left(\frac{1}{2} \ln k, 0\right)$, where k is a constant and $k > 1$, as shown in the diagram above.

On separate diagrams, sketch the curve with equation

(a) $y = |f(x)|$,

(3)

(b) $y = f^{-1}(x)$

(2)

Show on each sketch the coordinates, in terms of k , of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f ,

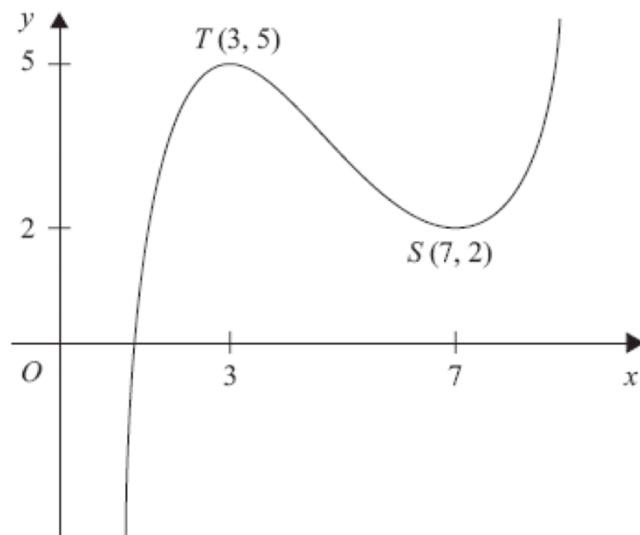
(1)

(d) find $f^{-1}(x)$,

(3)

(e) write down the domain of f^{-1} .

Question 10



The figure above shows the graph of $y = f(x)$, $1 < x < 9$.
The points $T(3, 5)$ and $S(7, 2)$ are turning points on the graph.

Sketch, on separate diagrams, the graphs of

(a) $y = 2f(x) - 4$, (3)
(b) $y = |f(x)|$. (3)

Indicate on each diagram the coordinates of any turning points on your sketch.

(Total 6 marks)

Question 11

For the constant k , where $k > 1$, the functions f and g are defined by

$$f: x \mapsto \ln(x+k), \quad x > -k,$$

$$g: x \mapsto |2x-k|, \quad x \in \mathbb{R}$$

(a) On separate axes, sketch the graph of f and the graph of g .

On each sketch state, in terms of k , the coordinates of points where the graph meets the coordinate axes.

(5)

(b) Write down the range of f .

(1)

(c) Find $fg\left(\frac{k}{4}\right)$ in terms of k , giving your answer in its simplest form.

(2)

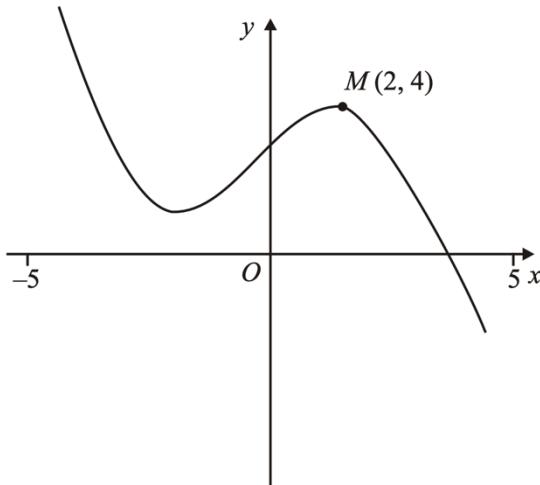
The curve C has equation $y = f(x)$. The tangent to C at the point with x -coordinate 3 is parallel to the line with equation $9y = 2x + 1$.

(d) Find the value of k .

(4)

(Total 12 marks)

Question 12



The figure above shows the graph of $y = f(x)$, $-5 \leq x \leq 5$.
The point $M(2, 4)$ is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of

(a) $y = f(x) + 3$,

(2)

(b) $y = |f(x)|$,

(2)

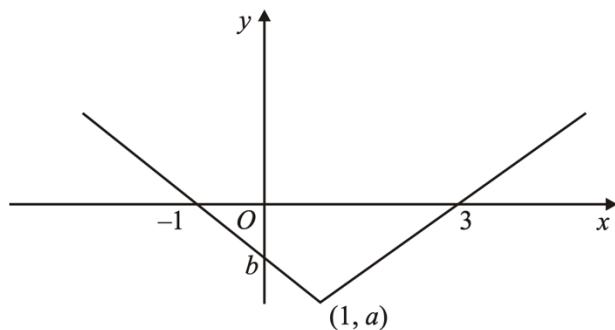
(c) $y = f(|x|)$.

(3)

Show on each graph the coordinates of any maximum turning points.

(Total 7 marks)

Question 13



This figure shows part of the graph of $y = f(x)$, $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point $(1, a)$, $a < 0$. One line meets the x -axis at $(3, 0)$. The other line meets the x -axis at $(-1, 0)$ and the y -axis at $(0, b)$, $b < 0$.

In separate diagrams, sketch the graph with equation

(a) $y = f(x + 1)$,

(2)

(b) $y = f(|x|)$.

(3)

Indicate clearly on each sketch the coordinates of any points of intersection with the axes.

Given that $f(x) = |x - 1| - 2$, find

(c) the value of a and the value of b ,

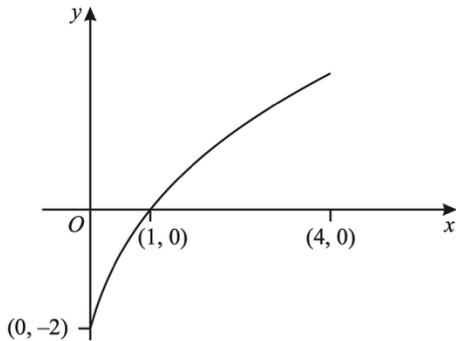
(2)

(d) the value of x for which $f(x) = 5x$.

(4)

(Total 11 marks)

Question 14



This diagram shows a sketch of the curve with equation $y = f(x)$, $0 \leq x \leq 4$. The curve passes through the point $(1, 0)$ on the x -axis and meets the y -axis at the point $(0, -2)$.

Sketch, on separate axes, the graph of

(a) $y = |f(x)|$,

(2)

(b) $y = f(2x)$,

(2)

(c) $y = f^{-1}(x)$,

(3)

in each case showing the coordinates of the points at which the graph meets the axes.

(Total 7 marks)

Question 15

The function f is defined by

$$f: x \mapsto |2x - 5|, \quad x \in \mathbb{R}.$$

(a) Sketch the graph of $y = f(x)$, showing the coordinates of points at which the graph meets or crosses the axes.

(3)

(b) Find the values of x for which $f(x) = x$.

(4)

The function g is defined by

$$g: x \mapsto x(x - 6), \quad x \in \mathbb{R}.$$

(c) Find the range of $g(x)$.

(3)

(d) Find $fg(1)$.

(2)

(Total 12 marks)

Question 16

The functions f and g are defined by

$$f: x \mapsto |x - a| + a, \quad x \in \mathbb{R},$$

$$g: x \mapsto 4x + a, \quad x \in \mathbb{R}.$$

where a is a positive constant.

(a) On the same diagram, sketch the graphs of f and g , showing clearly the coordinates of any points at which your graphs meet the axes. (5)

(b) Use algebra to find, in terms of a , the coordinates of the point at which the graphs of f and g intersect. (3)

(c) Find an expression for $fg(x)$. (2)

(d) Solve, for x in terms of a , the equation $fg(x) = 3a$. (3)

(Total 13 marks)

Question 17

(a) Sketch the graph of $y = |2x + a|$, $a > 0$, showing the coordinates of the points where the graph meets the coordinate axes. (2)

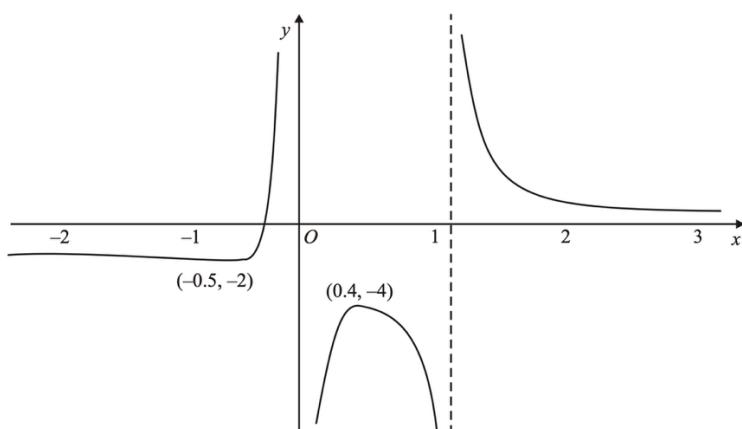
(b) On the same axes, sketch the graph of $y = \frac{1}{x}$. (1)

(c) Explain how your graphs show that there is only one solution of the equation $x|2x + a| - 1 = 0$. (1)

(d) Find, using algebra, the value of x for which $x|2x + 1| - 1 = 0$. (3)

(Total 7 marks)

Question 18



On a separate diagram sketch the graphs of

(a) $y = |f(x)|$, (4)

(b) $y = f(x - 3)$, (4)

(c) $y = f(|x|)$. (4)

In each case show clearly

(i) the coordinates of any points at which the curve has a maximum or minimum point,

(ii) how the curve approaches the asymptotes of the curve.

(Total 12 marks)

The diagram above shows a sketch of part of the curve with equation $y = f(x)$, $x \in \mathbb{R}$.

The curve has a minimum point at $(-0.5, -2)$ and a maximum point at $(0.4, -4)$. The lines $x = 1$, the x -axis and the y -axis are asymptotes of the curve, as shown in the diagram above.