

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	Makes an attempt to factor all the quadratics on the left-hand side of the identity.	M1	2.2a	5th Simplify algebraic fractions.
	Correctly factors each expression on the left-hand side of the identity:	A1	2.2a	
	$\frac{(x-6)(x+6)}{(x-5)(x-6)} \times \frac{(5-x)(5+x)}{Ax^2 + Bx + C} \times \frac{(3x-1)(2x+3)}{(3x-1)(x+6)}$			
	Successfully cancels common factors: $\frac{(-1)(5+x)(2x+3)}{Ax^2 + Bx + C} \equiv \frac{x+5}{(-1)(x-6)}$	M1	1.1b	
	States that $Ax^2 + Bx + C \equiv (2x+3)(x-6)$	M1	1.1b	
	States or implies that $A = 2$, $B = -9$ and $C = -18$	A1	1.1b	
	(5 marks)			
	<p>Notes</p> <p>Alternative method</p> <p>Makes an attempt to substitute $x = 0$ (M1)</p> <p>Finds $C = -18$ (A1)</p> <p>Substitutes $x = 1$ to give $A + B = -7$ (M1)</p> <p>Substitutes $x = -1$ to give $A - B = 11$ (M1)</p> <p>Solves to get $A = 2$, $B = -9$ and $C = -18$ (A1)</p>			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
2	<p>Correctly factorises the denominator of the left-hand fraction:</p> $\frac{6}{(2x+5)(2x-1)} + \frac{3x+1}{2x-1}$	M1	2.2a	4th Add, subtract, multiply and divide algebraic fractions.	
	<p>Multiplies the right-hand fraction by $\frac{2x+5}{2x+5}$</p> <p>For example:</p> $\frac{6}{(2x+5)(2x-1)} + \frac{(3x+1)(2x+5)}{(2x-1)(2x+5)} \text{ is seen.}$	M1	1.1b		
	<p>Makes an attempt to distribute the numerator of the right-hand fraction.</p> <p>For example:</p> $\frac{6 + 6x^2 + 17x + 5}{(2x+5)(2x-1)} \text{ is seen.}$	M1	1.1b		
	<p>Fully simplified answer is seen.</p> <p>Accept either $\frac{6x^2 + 17x + 11}{(2x+5)(2x-1)}$ or $\frac{(6x+11)(x+1)}{(2x+5)(2x-1)}$</p>	A1	1.1b		
				(4 marks)	
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3	States that: $A(2x+5) + B(5x-1) \equiv 6x+42$	M1	2.2a	5th Decompose algebraic fractions into partial fractions – two linear factors.	
	Equates the various terms. Equating the coefficients of x : $2A+5B=6$ Equating constant terms: $5A-B=42$	M1*	2.2a		
	Multiplies both of the equations in an effort to equate one of the two variables.	M1*	1.1b		
	Finds $A = 8$	A1	1.1b		
	Find $B = -2$	A1	1.1b		
(5 marks)					
<p style="text-align: center;">Notes</p> <p>Alternative method</p> <p>Uses the substitution method, having first obtained this equation: $A(2x+5) + B(5x-1) \equiv 6x+42$</p> <p>Substitutes $x = -\frac{5}{2}$ to obtain $-\frac{27}{2}B = 27$ (M1)</p> <p>Substitutes $x = \frac{1}{5}$ to obtain $\frac{27}{5}A = 43.2$ (M1)</p>					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	States that: $A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x) \equiv 4x^2 + x - 23$	M1	2.2a	6th Decompose algebraic fractions into partial fractions – three linear factors.
	Further states that: $A(-x^2 - x + 20) + B(x^2 + 2x - 15) + C(-x^2 + 7x - 12) \equiv 4x^2 + x - 23$	M1	1.1b	
	Equates the various terms. Equating the coefficients of x^2 : $-A + B - C = 4$ Equating the coefficients of x : $-A + 2B + 7C = 1$ Equating constant terms: $20A - 15B - 12C = -23$	M1*	2.2a	
	Makes an attempt to manipulate the expressions in order to find A , B and C . Obtaining two different equations in the same two variables would constitute an attempt.	M1*	1.1b	
	Finds the correct value of any one variable: either $A = 2$, $B = 5$ or $C = -1$	A1*	1.1b	
	Finds the correct value of all three variables: $A = 2$, $B = 5$, $C = -1$	A1	1.1b	
(6 marks)				

Notes

Alternative method

Uses the substitution method, having first obtained this equation:

$$A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x) \equiv 4x^2 + x - 23$$

Substitutes $x = 4$ to obtain $9B = 45$ (M1)

Substitutes $x = 3$ to obtain $8A = 16$ (M1)

Substitutes $x = -5$ to obtain $-72C = 72$ (A1)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
5	States that: $A(x-4)(3x+1) + B(3x+1) + C(x-4)(x-4) \equiv 18x^2 - 98x + 78$	M1	2.2a	7th Decompose algebraic fractions into partial fractions – repeated factors.	
	Further states that: $A(3x^2 - 11x - 4) + B(3x+1) + C(x^2 - 8x + 16) \equiv 18x^2 - 98x + 78$	M1	1.1b		
	Equates the various terms. Equating the coefficients of x^2 : $3A + C = 18$ Equating the coefficients of x : $-11A + 3B - 8C = -98$ Equating constant terms: $-4A + B + 16C = 78$	M1	2.2a		
	Makes an attempt to manipulate the expressions in order to find A , B and C . Obtaining two different equations in the same two variables would constitute an attempt.	M1	1.1b		
	Finds the correct value of any one variable: either $A = 4$, $B = -2$ or $C = 6$	A1	1.1b		
	Finds the correct value of all three variables: $A = 4$, $B = -2$, $C = 6$	A1	1.1b		
				(6 marks)	
	Notes Alternative method Uses the substitution method, having first obtained this equation: $A(x-4)(3x+1) + B(3x+1) + C(x-4)(x-4) \equiv 18x^2 - 98x + 78$ Substitutes $x = 4$ to obtain $13B = -26$ Substitutes $x = -\frac{1}{3}$ to obtain $\frac{169}{9}C = \frac{338}{3} \Rightarrow C = \frac{1014}{169} = 6$ Equates the coefficients of x^2 : $3A + C = 18$ Substitutes the found value of C to obtain $3A = 12$				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6	<p>Makes an attempt to set up a long division.</p> <p>For example: $x + 6 \overline{)x^3 + 8x^2 - 9x + 12}$ is seen.</p> <p>Award 1 accuracy mark for each of the following: x^2 seen, $2x$ seen, -21 seen.</p> <p>For the final accuracy mark either $D = 138$ or $\frac{138}{x + 6}$ or the remainder is 138 must be seen.</p> $ \begin{array}{r} x^2 + 2x - 21 \\ x + 6 \overline{)x^3 + 8x^2 - 9x + 12} \\ \underline{x^3 + 6x^2} \\ 2x^2 - 9x \\ \underline{2x^2 + 12x} \\ -21x + 12 \\ \underline{-21x - 126} \\ 138 \end{array} $	M1	2.2a	5th Divide polynomials by linear expressions with a remainder.

(5 marks)

Notes

This question can be solved by first writing $(Ax^2 + Bx + C)(x + 6) + D \equiv x^3 + 8x^2 - 9x + 12$ and then solving for A, B, C and D . Award 1 mark for the setting up the problem as described. Then award 1 mark for each correct coefficient found. For example:

Equating the coefficients of x^3 : $A = 1$

Equating the coefficients of x^2 : $6 + B = 8$, so $B = 2$

Equating the coefficients of x : $12 + C = -9$, so $C = -21$

Equating the constant terms: $-126 + D = 12$, so $D = 138$.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
7	<p>Makes an attempt to set up a long division.</p> <p>For example: $x^2 - 2x - 15 \overline{)x^4 + 2x^3 - 29x^2 - 48x + 90}$ is seen.</p>	M1	2.2a	6th Decompose algebraic fractions into partial fractions – three linear factors.	
	<p>Award 1 accuracy mark for each of the following:</p> <p>x^2 seen, $4x$ seen, -6 seen.</p> $ \begin{array}{r} x^2 + 4x - 6 \\ x^2 - 2x - 15 \overline{)x^4 + 2x^3 - 29x^2 - 47x + 77} \\ \underline{x^4 - 2x^3 - 15x^2} \\ 4x^3 - 14x^2 - 47x \\ \underline{4x^3 - 8x^2 - 60x} \\ -6x^2 + 13x + 77 \\ \underline{-6x^2 + 12x + 90} \\ x - 13 \end{array} $	A3	1.1b		
	<p>Equates the various terms to obtain the equation:</p> <p>$x - 13 = V(x - 5) + W(x + 3)$</p> <p>Equating the coefficients of x: $V + W = 1$</p> <p>Equating constant terms: $-5V + 3W = -13$</p>	M1	2.2a		
	Multiplies one or or both of the equations in an effort to equate one of the two variables.	M1	1.1b		
	Finds $W = -1$ and $V = 2$.	A1	1.1b		
				(7 marks)	
	Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
8	Equating the coefficients of x^4 : $A = 5$	A1	2.2a	6th Solve problems using the remainder theorem linked to improper algebraic fractions.	
	Equating the coefficients of x^3 : $B = -4$	A1	1.1b		
	Equating the coefficients of x^2 : $2A + C = 17$, $C = 7$	A1	1.1b		
	Equating the coefficients of x : $2B + D = -5$, $D = 3$	A1	1.1b		
	Equating constant terms: $2C + E = 7$, $E = -7$	A1	1.1b		
(5 marks)					
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
9	<p>Makes an attempt to set up a long division.</p> <p>For example: $9x^2 + 0x - 16 \overline{)9x^2 + 25x + 16}$ is seen.</p> <p>The '0x' being seen is not necessary to award the mark.</p>	M1	2.2a	<p>5th</p> <p>Decompose algebraic fractions into partial fractions – two linear factors.</p>	
	<p>Long division completed so that a '1' is seen in the quotient and a remainder of $25x + 32$ is also seen.</p> $ \begin{array}{r} 1 \\ 9x^2 + 0x - 16 \overline{)9x^2 + 25x + 16} \\ 9x^2 + 0x - 16 \\ \hline 25x + 32 \end{array} $	M1	1.1b		
	<p>States $B(3x + 4) + C(3x - 4) \equiv 25x - 32$</p>	M1	1.1b		
	<p>Equates the various terms.</p> <p>Equating the coefficients of x: $3B + 3C = 25$</p> <p>Equating constant terms: $4B - 4C = 32$</p>	M1	2.2a		
	<p>Multiplies one or both of the equations in an effort to equate one of the two variables.</p>	M1	1.1b		
	<p>Finds $B = \frac{49}{6}$</p>	A1	1.1b		
	<p>Finds $C = \frac{1}{6}$</p>	A1	1.1b		

(7 marks)

Notes

Alternative method

Writes $A + \frac{B}{3x-4} + \frac{C}{3x+4}$ as $\frac{A(3x-4)(3x+4)}{9x^2-16} + \frac{B(3x+4)}{9x^2-16} + \frac{C(3x-4)}{9x^2-16}$

States $A(3x-4)(3x+4) + B(3x+4) + C(3x-4) \equiv 9x^2 + 25x + 16$

Substitutes $x = \frac{4}{3}$ to obtain: $8B = \frac{196}{3} \Rightarrow B = \frac{49}{6}$

Substitutes $x = -\frac{4}{3}$ to obtain: $-8C = -\frac{4}{3} \Rightarrow C = \frac{1}{6}$

Equating the coefficients of x^2 : $9A = 9 \Rightarrow A = 1$